班級規(guī)模及環(huán)境--熱線:4008699035 手機:15921673576( 微信同號) |
每期人數(shù)限3到5人。 |
上課時間和地點 |
上課地點:【上海】:同濟大學(xué)(滬西)/新城金郡商務(wù)樓(11號線白銀路站) 【深圳分部】:電影大廈(地鐵一號線大劇院站)/深圳大學(xué)成教院 【北京分部】:北京中山學(xué)院/福鑫大樓 【南京分部】:金港大廈(和燕路) 【武漢分部】:佳源大廈(高新二路) 【成都分部】:領(lǐng)館區(qū)1號(中和大道) 【沈陽分部】:沈陽理工大學(xué)/六宅臻品 【鄭州分部】:鄭州大學(xué)/錦華大廈 【石家莊分部】:河北科技大學(xué)/瑞景大廈 【廣州分部】:廣糧大廈 【西安分部】:協(xié)同大廈
最近開課時間(周末班/連續(xù)班/晚班):2020年3月16日 |
實驗設(shè)備 |
☆資深工程師授課
☆注重質(zhì)量
☆邊講邊練
☆合格學(xué)員免費推薦工作
★實驗設(shè)備請點擊這兒查看★ |
質(zhì)量保障 |
1、培訓(xùn)過程中,如有部分內(nèi)容理解不透或消化不好,可免費在以后培訓(xùn)班中重聽;
2、培訓(xùn)結(jié)束后,授課老師留給學(xué)員聯(lián)系方式,保障培訓(xùn)效果,免費提供課后技術(shù)支持。
3、培訓(xùn)合格學(xué)員可享受免費推薦就業(yè)機會。 |
課程大綱 |
互聯(lián)網(wǎng)點擊數(shù)據(jù)、傳感數(shù)據(jù)、日志文件、具有豐富地理空間信息的移動數(shù)據(jù)和涉及網(wǎng)絡(luò)的各類評論,成為了海量信息的多種形式。當(dāng)數(shù)據(jù)以成百上千TB不斷增長的時候,我們在內(nèi)部交易系統(tǒng)的歷史信息之外,需要一種基于大數(shù)據(jù)分析的決策模型和技術(shù)支持。
????
大數(shù)據(jù)通常具有:數(shù)據(jù)體量(Volume)巨大,數(shù)據(jù)類型(Variety)繁多,價值(Value)密度低,處理速度(Velocity)快等四大特征。如何有效管理和高效處理這些大數(shù)據(jù)已成為當(dāng)前亟待解決的問題。大數(shù)據(jù)處理意味著更嚴(yán)峻的挑戰(zhàn),更好地管理和處理這些數(shù)據(jù)也將會獲得意想不到的收獲。
????
Google發(fā)布的GFS和MapReduce等高可擴展、高性能的分布式大數(shù)據(jù)處理框架,證明了在處理海量網(wǎng)頁數(shù)據(jù)時該框架的優(yōu)越性。GFS/MapReduce框架實現(xiàn)了更高應(yīng)用層次的抽象,使用戶無需關(guān)注復(fù)雜的內(nèi)部工作機制,無需具備豐富的分布式系統(tǒng)知識及開發(fā)經(jīng)驗,即可實現(xiàn)大規(guī)模分布式系統(tǒng)的部署與大數(shù)據(jù)的并行處理。Apache Hadoop開源項目開發(fā)團隊,克隆了GFS/MapReduce框架,推出了Hadoop系統(tǒng)。該系統(tǒng)已受到學(xué)術(shù)界和工業(yè)界的廣泛認(rèn)可和采納,并孵化出眾多子項目(如Hive、Pig、HBase和Zookeeper等),日益形成一個易部署、易開發(fā)、功能齊全、性能優(yōu)良的系統(tǒng)。
????
本課程從大數(shù)據(jù)技術(shù)以及Hadoop/Yarn實戰(zhàn)的角度,結(jié)合理論和實踐,全方位地介紹Hadoop/Yarn這一高性能處理大數(shù)據(jù)工具的開發(fā)技巧。本課程涉及的主題包括:Hadoop/Yarn分布式文件系統(tǒng)DFS;MapReduce的的工作機制、類型和格式;如何構(gòu)建和管理Hadoop/Yarn集群;Pig Latin語言的使用技巧;Hive數(shù)據(jù)倉庫工具介紹;HBase和Zookeeper工具的使用和管理;開源數(shù)據(jù)采集工具sqoop。
????
本課程教學(xué)過程中還提供了案例分析來幫助學(xué)員了解如何用Hadoop/Yarn系列工具來解決具體的問題,并介紹了從大數(shù)據(jù)中挖掘出有價值的信息的關(guān)鍵。
????
本課程不是一個泛泛的理論性、概念性的介紹課程,而是針對問題討論解決方案的深入課程。教師對于上述領(lǐng)域有深入的理論研究與實踐經(jīng)驗,在課程中將會針對這些問題與學(xué)員一起進(jìn)行研究,在關(guān)鍵點上還會搭建實驗環(huán)境進(jìn)行實踐研究,以加深對于這些解決方案的理解。通過本課程學(xué)習(xí),希望推動Hadoop/Yarn相關(guān)的項目開發(fā)上升到一個新水平。
培訓(xùn)目標(biāo)
1,全面了解基于Hadoop/Yarn的大數(shù)據(jù)處理相關(guān)知識。
2,學(xué)習(xí)Hadoop/Yarn的核心技術(shù)方法以及應(yīng)用特征。
3,深入學(xué)習(xí)Hadoop/Yarn相關(guān)工具在大數(shù)據(jù)中的實操使用。
4,了解Hadoop與Storm、Spark、Docker等技術(shù)的融合使用。
課程大綱
第一講、云計算及大數(shù)據(jù)處理技術(shù)介紹
1)云計算的概念
2)云計算發(fā)展現(xiàn)狀
3)大數(shù)據(jù)的概念
4)大數(shù)據(jù)的應(yīng)用
5)大數(shù)據(jù)關(guān)鍵技術(shù)
第二講、Google的關(guān)鍵技術(shù)
1)GFS分布式文件系統(tǒng)
2)Chubby并發(fā)鎖機制
3)MapReduce計算模型
4)Bigtable大表管理技術(shù)
第三講、Hadoop系統(tǒng)及HDFS
1) Hadoop及其運行架構(gòu)
2) Yarn中的隔離和調(diào)度機制
3) HDFS分布式文件及塊
4) Seqenence file等DFS文件格式
5) HA和Federation
第四講、MapReduce計算模型設(shè)計
1) MapReduce產(chǎn)生背景
2) MapReduce編程模型
3) MapReduce實現(xiàn)機制
4) MapReduce案例分析
第五講、Pig 數(shù)據(jù)流處理工具
1)Pig 設(shè)計的目標(biāo)
2)Pig Latine介紹
3)Pig關(guān)鍵性技術(shù)
4)Pig的實用案例
第六講、 云數(shù)據(jù)倉庫Hive
1) Hive設(shè)計目標(biāo)
2) Hive數(shù)據(jù)模型
3) Hive關(guān)鍵性技術(shù)
4) Hive的使用案例
第七講、HBase和NoSQL
1)NoSQL技術(shù)及其應(yīng)用介紹
2)HBase數(shù)據(jù)處理機制
3)HBase列族設(shè)計及API
4)HBase高并發(fā)讀/寫的實現(xiàn)
5)ZooKeeper并發(fā)控制模型
第八講、 數(shù)據(jù)抽取工具Sqoop
1)云中數(shù)據(jù)與DBMS數(shù)據(jù)的交換
2)Sqoop數(shù)據(jù)抽取關(guān)鍵技術(shù)
3)Sqoop數(shù)據(jù)抽取策略
4)Sqoop的使用實例
第九講、 Hadoop與其他云數(shù)據(jù)處理技術(shù)的融合
1)其他云環(huán)境中大數(shù)據(jù)處理技術(shù)介紹
2)與Spark實時處理技術(shù)的融合
3)與Storm流數(shù)據(jù)處理技術(shù)的融合
4)與Docker等其它云工具的融合
5)基于Hadoop/Yarn的大數(shù)據(jù)挖掘應(yīng)用 |
|
|
|
|
|
|