班級(jí)人數(shù)--熱線:4008699035 手機(jī):15921673576( 微信同號(hào)) |
增加互動(dòng)環(huán)節(jié),
保障培訓(xùn)效果,堅(jiān)持小班授課,每個(gè)班級(jí)的人數(shù)限3到5人,超過(guò)限定人數(shù),安排到下一期進(jìn)行學(xué)習(xí)。 |
授課地點(diǎn)及時(shí)間 |
上課地點(diǎn):【上海】:同濟(jì)大學(xué)(滬西)/新城金郡商務(wù)樓(11號(hào)線白銀路站) 【深圳分部】:電影大廈(地鐵一號(hào)線大劇院站)/深圳大學(xué)成教院 【北京分部】:北京中山學(xué)院/福鑫大樓 【南京分部】:金港大廈(和燕路) 【武漢分部】:佳源大廈(高新二路) 【成都分部】:領(lǐng)館區(qū)1號(hào)(中和大道) 【廣州分部】:廣糧大廈 【西安分部】:協(xié)同大廈 【沈陽(yáng)分部】:沈陽(yáng)理工大學(xué)/六宅臻品 【鄭州分部】:鄭州大學(xué)/錦華大廈 【石家莊分部】:河北科技大學(xué)/瑞景大廈
開(kāi)班時(shí)間(連續(xù)班/晚班/周末班):2020年3月16日 |
課時(shí) |
◆資深工程師授課
☆注重質(zhì)量
☆邊講邊練
☆若學(xué)員成績(jī)達(dá)到合格及以上水平,將獲得免費(fèi)推薦工作的機(jī)會(huì)
★查看實(shí)驗(yàn)設(shè)備詳情,請(qǐng)點(diǎn)擊此處★ |
質(zhì)量以及保障 |
☆
1、如有部分內(nèi)容理解不透或消化不好,可免費(fèi)在以后培訓(xùn)班中重聽(tīng);
☆ 2、在課程結(jié)束之后,授課老師會(huì)留給學(xué)員手機(jī)和E-mail,免費(fèi)提供半年的課程技術(shù)支持,以便保證培訓(xùn)后的繼續(xù)消化;
☆3、合格的學(xué)員可享受免費(fèi)推薦就業(yè)機(jī)會(huì)。
☆4、合格學(xué)員免費(fèi)頒發(fā)相關(guān)工程師等資格證書(shū),提升您的職業(yè)資質(zhì)。 |
☆課程大綱☆ |
|
Introduction
Course Objectives
Suggested Course Pre-requisites
Suggested Course Schedule
Class Sample Schemas
Practice and Solutions Structure
Review location of additional resources (including ODM and SQL Developer documentation and online resources)
Overviewing Data Mining Concepts
What is Data Mining?
Why use Data Mining?
Examples of Data Mining Applications
Supervised Versus Unsupervised Learning
Supported Data Mining Algorithms and Uses
Understanding the Data Mining Process
Common Tasks in the Data Mining Process
Introducing Oracle Data Miner 11g Release 2
Data mining with Oracle Database
Introducing the SQL Developer interface
Setting up Oracle Data Miner
Accessing the Data Miner GUI
Identifying Data Miner interface components
Examining Data Miner Nodes
Previewing Data Miner Workflows
Using Classification Models
Reviewing Classification Models
Adding a Data Source to the Workflow
Using the Data Source Wizard
Creating Classification Models
Building the Models
Examining Class Build Tabs
Comparing the Models
Selecting and Examining a Model
Using Regression Models
Reviewing Regression Models
Adding a Data Source to the Workflow
Using the Data Source Wizard
Performing Data Transformations
Creating Regression Models
Building the Models
Comparing the Models
Selecting a Model
Performing Market Basket Analysis
What is Market Basket Analysis?
Reviewing Association Rules
Creating a New Workflow
Adding a Data Source to th Workflow
Creating an Association Rules Model
Defining Association Rules
Building the Model
Examining Test Results
Using Clustering Models
Describing Algorithms used for Clustering Models
Adding Data Sources to the Workflow
Exploring Data for Patterns
Defining and Building Clustering Models
Comparing Model Results
Selecting and Applying a Model
Defining Output Format
Examining Cluster Results
Performing Anomaly Detection
Reviewing the Model and Algorithm used for Anomaly Detection
Adding Data Sources to the Workflow
Creating the Mode
Building the Model
Examining Test Results
Applying the Model
Evaluating Results
Deploying Data Mining Results
Requirements for deployment
Deployment Tasks
Examining Deployment Options
|