班級人數--熱線:4008699035 手機:15921673576( 微信同號) |
增加互動環節,
保障培訓效果,堅持小班授課,每個班級的人數限3到5人,超過限定人數,安排到下一期進行學習。 |
授課地點及時間 |
上課地點:【上海】:同濟大學(滬西)/新城金郡商務樓(11號線白銀路站) 【深圳分部】:電影大廈(地鐵一號線大劇院站)/深圳大學成教院 【北京分部】:北京中山學院/福鑫大樓 【南京分部】:金港大廈(和燕路) 【武漢分部】:佳源大廈(高新二路) 【成都分部】:領館區1號(中和大道) 【廣州分部】:廣糧大廈 【西安分部】:協同大廈 【沈陽分部】:沈陽理工大學/六宅臻品 【鄭州分部】:鄭州大學/錦華大廈 【石家莊分部】:河北科技大學/瑞景大廈
開班時間(連續班/晚班/周末班):2020年3月16日 |
課時 |
◆資深工程師授課
☆注重質量
☆邊講邊練
☆若學員成績達到合格及以上水平,將獲得免費推薦工作的機會
★查看實驗設備詳情,請點擊此處★ |
質量以及保障 |
☆
1、如有部分內容理解不透或消化不好,可免費在以后培訓班中重聽;
☆ 2、在課程結束之后,授課老師會留給學員手機和E-mail,免費提供半年的課程技術支持,以便保證培訓后的繼續消化;
☆3、合格的學員可享受免費推薦就業機會。
☆4、合格學員免費頒發相關工程師等資格證書,提升您的職業資質。 |
☆課程大綱☆ |
|
- DAY 1 - ARTIFICIAL NEURAL NETWORKS
Introduction and ANN Structure.
Biological neurons and artificial neurons.
Model of an ANN.
Activation functions used in ANNs.
Typical classes of network architectures .
Mathematical Foundations and Learning mechanisms.
Re-visiting vector and matrix algebra.
State-space concepts.
Concepts of optimization.
Error-correction learning.
Memory-based learning.
Hebbian learning.
Competitive learning.
Single layer perceptrons.
Structure and learning of perceptrons.
Pattern classifier - introduction and Bayes' classifiers.
Perceptron as a pattern classifier.
Perceptron convergence.
Limitations of a perceptrons.
Feedforward ANN.
Structures of Multi-layer feedforward networks.
Back propagation algorithm.
Back propagation - training and convergence.
Functional approximation with back propagation.
Practical and design issues of back propagation learning.
Radial Basis Function Networks.
Pattern separability and interpolation.
Regularization Theory.
Regularization and RBF networks.
RBF network design and training.
Approximation properties of RBF.
Competitive Learning and Self organizing ANN.
General clustering procedures.
Learning Vector Quantization (LVQ).
Competitive learning algorithms and architectures.
Self organizing feature maps.
Properties of feature maps.
Fuzzy Neural Networks.
Neuro-fuzzy systems.
Background of fuzzy sets and logic.
Design of fuzzy stems.
Design of fuzzy ANNs.
Applications
A few examples of Neural Network applications, their advantages and problems will be discussed.
DAY -2 MACHINE LEARNING
The PAC Learning Framework
Guarantees for finite hypothesis set – consistent case
Guarantees for finite hypothesis set – inconsistent case
Generalities
Deterministic cv. Stochastic scenarios
Bayes error noise
Estimation and approximation errors
Model selection
Radmeacher Complexity and VC – Dimension
Bias - Variance tradeoff
Regularisation
Over-fitting
Validation
Support Vector Machines
Kriging (Gaussian Process regression)
PCA and Kernel PCA
Self Organisation Maps (SOM)
Kernel induced vector space
Mercer Kernels and Kernel - induced similarity metrics
Reinforcement Learning
DAY 3 - DEEP LEARNING
This will be taught in relation to the topics covered on Day 1 and Day 2
Logistic and Softmax Regression
Sparse Autoencoders
Vectorization, PCA and Whitening
Self-Taught Learning
Deep Networks
Linear Decoders
Convolution and Pooling
Sparse Coding
Independent Component Analysis
Canonical Correlation Analysis
Demos and Applications
|