曙海教育集團
全國報名免費熱線:4008699035 微信:shuhaipeixun
或15921673576(微信同號) QQ:1299983702
首頁 課程表 在線聊 報名 講師 品牌 QQ聊 活動 就業
 
Advanced Lua培訓
 
   班級人數--熱線:4008699035 手機:15921673576( 微信同號)
      增加互動環節, 保障培訓效果,堅持小班授課,每個班級的人數限3到5人,超過限定人數,安排到下一期進行學習。
   授課地點及時間
上課地點:【上?!浚和瑵髮W(滬西)/新城金郡商務樓(11號線白銀路站) 【深圳分部】:電影大廈(地鐵一號線大劇院站)/深圳大學成教院 【北京分部】:北京中山學院/福鑫大樓 【南京分部】:金港大廈(和燕路) 【武漢分部】:佳源大廈(高新二路) 【成都分部】:領館區1號(中和大道) 【廣州分部】:廣糧大廈 【西安分部】:協同大廈 【沈陽分部】:沈陽理工大學/六宅臻品 【鄭州分部】:鄭州大學/錦華大廈 【石家莊分部】:河北科技大學/瑞景大廈
開班時間(連續班/晚班/周末班):2020年3月16日
   課時
     ◆資深工程師授課
        
        ☆注重質量 ☆邊講邊練

        ☆若學員成績達到合格及以上水平,將獲得免費推薦工作的機會
        ★查看實驗設備詳情,請點擊此處★
   質量以及保障

      ☆ 1、如有部分內容理解不透或消化不好,可免費在以后培訓班中重聽;
      ☆ 2、在課程結束之后,授課老師會留給學員手機和E-mail,免費提供半年的課程技術支持,以便保證培訓后的繼續消化;
      ☆3、合格的學員可享受免費推薦就業機會。
      ☆4、合格學員免費頒發相關工程師等資格證書,提升您的職業資質。

課程大綱
 
  • The course is divided into three separate days, the third being optional.
  • Day 1 Machine Learning & Deep Learning: theoretical concepts
    1. Introduction IA, Machine Learning & Deep Learning
  • History, basic concepts and usual applications of artificial intelligence far
  • Of the fantasies carried by this domain
  • Collective Intelligence: aggregating knowledge shared by many virtual agents
  • Genetic algorithms: to evolve a population of virtual agents by selection
  • Usual Learning Machine: definition.
  • Types of tasks: supervised learning, unsupervised learning, reinforcement learning
  • Types of actions: classification, regression, clustering, density estimation, reduction of
  • dimensionality
  • Examples of Machine Learning algorithms: Linear regression, Naive Bayes, Random Tree
  • Machine learning VS Deep Learning: problems on which Machine Learning remains
  • Today the state of the art (Random Forests & XGBoosts)
  • 2. Basic Concepts of a Neural Network (Application: multilayer perceptron)
  • Reminder of mathematical bases.
  • Definition of a network of neurons: classical architecture, activation and
  • Weighting of previous activations, depth of a network
  • Definition of the learning of a network of neurons: functions of cost, backpropagation,
  • Stochastic gradient descent, maximum likelihood.
  • Modeling of a neural network: modeling input and output data according to
  • The type of problem (regression, classification ...). Curse of dimensionality. Distinction between
  • Multifeature data and signal. Choice of a cost function according to the data.
  • Approximation of a function by a network of neurons: presentation and examples
  • Approximation of a distribution by a network of neurons: presentation and examples
  • Data Augmentation: how to balance a dataset
  • Generalization of the results of a network of neurons.
  • Initialization and regularization of a neural network: L1 / L2 regularization, Batch
  • Normalization ...
  • Optimization and convergence algorithms.
  • 3. Standard ML / DL Tools
  • A simple presentation with advantages, disadvantages, position in the ecosystem and use is planned.
  • Data management tools: Apache Spark, Apache Hadoop
  • Tools Machine Learning: Numpy, Scipy, Scikit
  • DL high level frameworks: PyTorch, Keras, Lasagne
  • Low level DL frameworks: Theano, Torch, Caffe, Tensorflow
  • Day 2 Convolutional and Recurrent Networks
    4. Convolutional Neural Networks (CNN).
  • Presentation of the CNNs: fundamental principles and applications
  • Basic operation of a CNN: convolutional layer, use of a kernel,
  • Padding & stride, feature map generation, pooling layers. Extensions 1D, 2D and
  • 3D.
  • Presentation of the different CNN architectures that brought the state of the art in classification
  • Images: LeNet, VGG Networks, Network in Network, Inception, Resnet. Presentation of
  • Innovations brought about by each architecture and their more global applications (Convolution
  • 1x1 or residual connections)
  • Use of an attention model.
  • Application to a common classification case (text or image)
  • CNNs for generation: superresolution, pixeltopixel segmentation. Presentation of
  • Main strategies for increasing feature maps for image generation.
  • 5. Recurrent Neural Networks (RNN).
  • Presentation of RNNs: fundamental principles and applications.
  • Basic operation of the RNN: hidden activation, back propagation through time,
  • Unfolded version.
  • Evolutions towards the Gated Recurrent Units (GRUs) and LSTM (Long Short Term Memory).
  • Presentation of the different states and the evolutions brought by these architectures
  • Convergence and vanising gradient problems
  • Classical architectures: Prediction of a temporal series, classification ...
  • RNN Encoder Decoder type architecture. Use of an attention model.
  • NLP applications: word / character encoding, translation.
  • Video Applications: prediction of the next generated image of a video sequence.
  • Day 3 Generational Models and Reinforcement Learning
    6. Generational models: Variational AutoEncoder (VAE) and Generative Adversarial Networks (GAN).
  • Presentation of the generational models, link with the CNNs seen in day 2
  • Autoencoder: reduction of dimensionality and limited generation
  • Variational Autoencoder: generational model and approximation of the distribution of a
  • given. Definition and use of latent space. Reparameterization trick. Applications and
  • Limits observed
  • Generative Adversarial Networks: Fundamentals. Dual Network Architecture
  • (Generator and discriminator) with alternate learning, cost functions available.
  • Convergence of a GAN and difficulties encountered.
  • Improved convergence: Wasserstein GAN, Began. Earth Moving Distance.
  • Applications for the generation of images or photographs, text generation, super
    resolution.
  • 7. Deep Reinforcement Learning.
  • Presentation of reinforcement learning: control of an agent in a defined environment
  • By a state and possible actions
  • Use of a neural network to approximate the state function
  • Deep Q Learning: experience replay, and application to the control of a video game.
  • Optimization of learning policy. Onpolicy && offpolicy. Actor critic
  • architecture. A3C.
  • Applications: control of a single video game or a digital system.
 
 
  備案號:備案號:滬ICP備08026168號-1 .(2024年07月24日)....................
友情鏈接:Cadence培訓 ICEPAK培訓 PCB設計培訓 adams培訓 fluent培訓系列課程 培訓機構課程短期培訓系列課程培訓機構 長期課程列表實踐課程高級課程學校培訓機構周末班培訓 南京 NS3培訓 OpenGL培訓 FPGA培訓 PCIE培訓 MTK培訓 Cortex訓 Arduino培訓 單片機培訓 EMC培訓 信號完整性培訓 電源設計培訓 電機控制培訓 LabVIEW培訓 OPENCV培訓 集成電路培訓 UVM驗證培訓 VxWorks培訓 CST培訓 PLC培訓 Python培訓 ANSYS培訓 VB語言培訓 HFSS培訓 SAS培訓 Ansys培訓 短期培訓系列課程培訓機構 長期課程列表實踐課程高級課程學校培訓機構周末班 端海 教育 企業 學院 培訓課程 系列班 長期課程列表實踐課程高級課程學校培訓機構周末班 短期培訓系列課程培訓機構 端海教育企業學院培訓課程 系列班
主站蜘蛛池模板: 色悠久久久久久久综合网| 久久国产综合精品五月天| 伊人亚洲综合网| 久久久久综合中文字幕| 国产综合精品女在线观看| 欧美综合图区亚洲综合图区| 久久婷婷五月综合97色直播| 国产人成精品综合欧美成人| 狠狠色综合色区| 亚洲国产一成久久精品国产成人综合| 欧美日韩亚洲国内综合网| 乱欧美综合| 人妻 日韩 欧美 综合 制服| 婷婷综合缴情亚洲狠狠图片| 久久久亚洲裙底偷窥综合| 97se亚洲国产综合自在线| 婷婷亚洲综合五月天小说| 伊人伊成久久人综合网777| 婷婷五月六月激情综合色中文字幕| 天天干天天射综合网| 俺来也俺去啦久久综合网| 欧美伊人久久大香线蕉综合69| 天天综合久久一二三区| 日韩综合无码一区二区| 综合欧美亚洲日本| 婷婷综合久久狠狠色99h| 久久综合亚洲色HEZYO社区| 狼狼综合久久久久综合网| 色综合中文综合网| 2020久久精品亚洲热综合一本| 亚洲综合伊人久久大杳蕉| 国产成+人欧美+综合在线观看| 丁香五月缴情综合网| 亚洲狠狠婷婷综合久久久久| 伊人久久大香线蕉综合热线| 狠狠色综合久久久久尤物| 亚洲一本综合久久| 区二区三区激情综合| 一本一道久久a久久精品综合| 狼狼综合久久久久综合网| 亚洲国产综合精品中文字幕|