課程目錄:Artificial Neural Networks, Machine Learning, Deep Thinking培訓
4401 人關注
(78637/99817)
課程大綱:

          Artificial Neural Networks, Machine Learning, Deep Thinking培訓

 

 

 

DAY 1 - ARTIFICIAL NEURAL NETWORKS
Introduction and ANN Structure.
Biological neurons and artificial neurons.
Model of an ANN.
Activation functions used in ANNs.
Typical classes of network architectures .
Mathematical Foundations and Learning mechanisms.
Re-visiting vector and matrix algebra.
State-space concepts.
Concepts of optimization.
Error-correction learning.
Memory-based learning.
Hebbian learning.
Competitive learning.
Single layer perceptrons.
Structure and learning of perceptrons.
Pattern classifier - introduction and Bayes' classifiers.
Perceptron as a pattern classifier.
Perceptron convergence.
Limitations of a perceptrons.
Feedforward ANN.
Structures of Multi-layer feedforward networks.
Back propagation algorithm.
Back propagation - training and convergence.
Functional approximation with back propagation.
Practical and design issues of back propagation learning.
Radial Basis Function Networks.
Pattern separability and interpolation.
Regularization Theory.
Regularization and RBF networks.
RBF network design and training.
Approximation properties of RBF.
Competitive Learning and Self organizing ANN.
General clustering procedures.
Learning Vector Quantization (LVQ).
Competitive learning algorithms and architectures.
Self organizing feature maps.
Properties of feature maps.
Fuzzy Neural Networks.
Neuro-fuzzy systems.
Background of fuzzy sets and logic.
Design of fuzzy stems.
Design of fuzzy ANNs.
Applications
A few examples of Neural Network applications, their advantages and problems will be discussed.
DAY -2 MACHINE LEARNING
The PAC Learning Framework
Guarantees for finite hypothesis set – consistent case
Guarantees for finite hypothesis set – inconsistent case
Generalities
Deterministic cv. Stochastic scenarios
Bayes error noise
Estimation and approximation errors
Model selection
Radmeacher Complexity and VC – Dimension
Bias - Variance tradeoff
Regularisation
Over-fitting
Validation
Support Vector Machines
Kriging (Gaussian Process regression)
PCA and Kernel PCA
Self Organisation Maps (SOM)
Kernel induced vector space
Mercer Kernels and Kernel - induced similarity metrics
Reinforcement Learning
DAY 3 - DEEP LEARNING
This will be taught in relation to the topics covered on Day 1 and Day 2
Logistic and Softmax Regression
Sparse Autoencoders
Vectorization, PCA and Whitening
Self-Taught Learning
Deep Networks
Linear Decoders
Convolution and Pooling
Sparse Coding
Independent Component Analysis
Canonical Correlation Analysis
Demos and Applications

主站蜘蛛池模板: 国产亚洲综合一区柠檬导航| 欧美亚洲综合另类| 久久综合五月丁香久久激情| 2021精品国产综合久久| 日本一道综合色视频| 99久久国产综合精品成人影院| 综合精品欧美日韩国产在线| 狠狠色噜噜色狠狠狠综合久久| 久久婷婷五月综合97色直播| 国产成+人+综合+欧美亚洲| 色综合久久久久网| 亚洲 欧美 日韩 综合aⅴ视频| 欧美亚洲另类久久综合婷婷| 亚洲成a人v欧美综合天堂| 激情五月婷婷综合| 色综合色综合色综合| 婷婷五月六月激情综合色中文字幕| 欧美综合天天夜夜久久| 国产亚洲欧美日韩综合综合二区| 亚洲综合偷自成人网第页色| 99久久国产亚洲综合精品| 亚洲欧美综合另类图片小说区| 久久综合给合久久狠狠狠97色69| 狠狠色狠狠色综合久久| 久久香蕉综合色一综合色88| 无码国内精品久久综合88| 精品福利一区二区三区精品国产第一国产综合精品| 亚洲综合国产一区二区三区| 欧美自拍另类欧美综合图片区| 婷婷综合缴情亚洲狠狠尤物| 色综合久久久久无码专区| 欧美精品国产综合久久| 一本色道久久88精品综合| 丁香狠狠色婷婷久久综合| 亚洲欧美日韩综合aⅴ视频| 国产欧美日韩综合精品二区| 三级韩国一区久久二区综合| 亚洲综合欧美精品一区二区| 亚洲国产综合专区在线电影| 色爱区综合激情五月综合色| 曰韩人妻无码一区二区三区综合部|