課程目錄:Deep Learning AI Techniques for Executives, Developers and Managers培訓
4401 人關注
(78637/99817)
課程大綱:

          Deep Learning AI Techniques for Executives, Developers and Managers培訓

 

 

 

Day-1:
Basic Machine Learning
Module-1
Introduction:

Exercise – Installing Python and NN Libraries
Why machine learning?
Brief history of machine learning
The rise of deep learning
Basic concepts in machine learning
Visualizing a classification problem
Decision boundaries and decision regions
iPython notebooks
Module-2
Exercise – Decision Regions
The artificial neuron
The neural network, forward propagation and network layers
Activation functions
Exercise – Activation Functions
Backpropagation of error
Underfitting and overfitting
Interpolation and smoothing
Extrapolation and data abstraction
Generalization in machine learning
Module-3
Exercise – Underfitting and Overfitting
Training, testing, and validation sets
Data bias and the negative example problem
Bias/variance tradeoff
Exercise – Datasets and Bias
Module-4
Overview of NN parameters and hyperparameters
Logistic regression problems
Cost functions
Example – Regression
Classical machine learning vs. deep learning
Conclusion
Day-2 : Convolutional Neural Networks (CNN)
Module-5
Introduction to CNN
What are CNNs?
Computer vision
CNNs in everyday life
Images – pixels, quantization of color & space, RGB
Convolution equations and physical meaning, continuous vs. discrete
Exercise – 1D Convolution
Module-6
Theoretical basis for filtering
Signal as sum of sinusoids
Frequency spectrum
Bandpass filters
Exercise – Frequency Filtering
2D convolutional filters
Padding and stride length
Filter as bandpass
Filter as template matching
Exercise – Edge Detection
Gabor filters for localized frequency analysis
Exercise – Gabor Filters as Layer 1 Maps
Module-7
CNN architecture
Convolutional layers
Max pooling layers
Downsampling layers
Recursive data abstraction
Example of recursive abstraction
Module-8
Exercise – Basic CNN Usage
ImageNet dataset and the VGG-16 model
Visualization of feature maps
Visualization of feature meanings
Exercise – Feature Maps and Feature Meanings
Day-3 : Sequence Model
Module-9
What are sequence models?
Why sequence models?
Language modeling use case
Sequences in time vs. sequences in space
Module-10
RNNs
Recurrent architecture
Backpropagation through time
Vanishing gradients
GRU
LSTM
Deep RNN
Bidirectional RNN
Exercise – Unidirectional vs. Bidirectional RNN
Sampling sequences
Sequence output prediction
Exercise – Sequence Output Prediction
RNNs on simple time varying signals
Exercise – Basic Waveform Detection
Module-11
Natural Language Processing (NLP)
Word embeddings
Word vectors: word2vec
Word vectors: GloVe
Knowledge transfer and word embeddings
Sentiment analysis
Exercise – Sentiment Analysis
Module-12
Quantifying and removing bias
Exercise – Removing Bias
Audio data
Beam search
Attention model
Speech recognition
Trigger word Detection
Exercise – Speech Recognition

主站蜘蛛池模板: 国产综合第一页| 狠狠色噜噜狠狠狠狠色综合久| 国产天堂一区二区综合| 国产成人综合久久精品红| 久久婷婷激情综合色综合俺也去| 青青综合在线| 国产成人精品综合在线观看| 伊人久久大香线焦综合四虎| 色88久久久久高潮综合影院| 欧美亚洲日本国产综合网| 亚洲综合国产一区二区三区| 色五月丁香六月欧美综合| 日韩亚洲国产综合久久久| 狠色狠色狠狠色综合久久| 欲香欲色天天综合和网| 91精品国产综合久久婷婷| 综合久久久久久中文字幕亚洲国产国产综合一区首| 久久―日本道色综合久久| 亚洲精品二区国产综合野狼| 亚洲香蕉网久久综合影视| 91精品一区二区综合在线| 久久综合九色综合网站| 狠狠做五月深爱婷婷天天综合| 亚洲欧美日韩综合一区二区| 国产色综合天天综合网 | 色综合久久天天综线观看| 天天综合色天天综合色hd| 国产精品天天影视久久综合网| 青青草原综合久久大伊人| 国产成人综合久久精品尤物| 偷自拍视频区综合视频区| 亚洲 欧美 国产 动漫 综合| 综合精品欧美日韩国产在线| 天天色天天综合| 婷婷五月六月激情综合色中文字幕| 亚洲欧美日韩国产综合一区二区| 93精91精品国产综合久久香蕉| 久久婷婷五月综合成人D啪| 久久综合亚洲色HEZYO社区| 日韩亚洲国产综合高清| 久久综合国产乱子伦精品免费|