課程目錄:Machine Learning and Deep Learning培訓
4401 人關注
(78637/99817)
課程大綱:

         Machine Learning and Deep Learning培訓

 

 

 

Machine learning
Introduction to Machine Learning

Applications of machine learning
Supervised Versus Unsupervised Learning
Machine Learning Algorithms
Regression
Classification
Clustering
Recommender System
Anomaly Detection
Reinforcement Learning
Regression

Simple & Multiple Regression
Least Square Method
Estimating the Coefficients
Assessing the Accuracy of the Coefficient Estimates
Assessing the Accuracy of the Model
Post Estimation Analysis
Other Considerations in the Regression Models
Qualitative Predictors
Extensions of the Linear Models
Potential Problems
Bias-variance trade off [under-fitting/over-fitting] for regression models
Resampling Methods

Cross-Validation
The Validation Set Approach
Leave-One-Out Cross-Validation
k-Fold Cross-Validation
Bias-Variance Trade-Off for k-Fold
The Bootstrap
Model Selection and Regularization

Subset Selection [Best Subset Selection, Stepwise Selection, Choosing the Optimal Model]
Shrinkage Methods/ Regularization [Ridge Regression, Lasso & Elastic Net]
Selecting the Tuning Parameter
Dimension Reduction Methods
Principal Components Regression
Partial Least Squares
Classification

Logistic Regression

The Logistic Model cost function

Estimating the Coefficients

Making Predictions

Odds Ratio

Performance Evaluation Matrices

[Sensitivity/Specificity/PPV/NPV, Precision, ROC curve etc.]

Multiple Logistic Regression

Logistic Regression for >2 Response Classes

Regularized Logistic Regression

Linear Discriminant Analysis

Using Bayes’ Theorem for Classification

Linear Discriminant Analysis for p=1

Linear Discriminant Analysis for p >1

Quadratic Discriminant Analysis

K-Nearest Neighbors

Classification with Non-linear Decision Boundaries

Support Vector Machines

Optimization Objective

The Maximal Margin Classifier

Kernels

One-Versus-One Classification

One-Versus-All Classification

Comparison of Classification Methods

Introduction to Deep Learning
ANN Structure

Biological neurons and artificial neurons

Non-linear Hypothesis

Model Representation

Examples & Intuitions

Transfer Function/ Activation Functions

Typical classes of network architectures

Feed forward ANN.

Structures of Multi-layer feed forward networks

Back propagation algorithm

Back propagation - training and convergence

Functional approximation with back propagation

Practical and design issues of back propagation learning

Deep Learning

Artificial Intelligence & Deep Learning

Softmax Regression

Self-Taught Learning

Deep Networks

Demos and Applications

Lab:
Getting Started with R

Introduction to R

Basic Commands & Libraries

Data Manipulation

Importing & Exporting data

Graphical and Numerical Summaries

Writing functions

Regression

Simple & Multiple Linear Regression

Interaction Terms

Non-linear Transformations

Dummy variable regression

Cross-Validation and the Bootstrap

Subset selection methods

Penalization [Ridge, Lasso, Elastic Net]

Classification

Logistic Regression, LDA, QDA, and KNN,

Resampling & Regularization

Support Vector Machine

Resampling & Regularization

Note:

For ML algorithms, case studies will be used to discuss their application, advantages & potential issues.

Analysis of different data sets will be performed using R

主站蜘蛛池模板: 狠狠色婷婷七月色综合| 亚洲色偷偷偷鲁综合| 亚洲国产成人久久综合碰碰动漫3d| 亚洲人成伊人成综合网久久久| 色悠久久久久久久综合网| 狠狠色丁香婷综合久久| 亚洲AV综合色区无码一区爱AV| 色视频综合无码一区二区三区| 亚洲综合av永久无码精品一区二区| 婷婷久久综合| 亚洲va欧美va国产综合| 狠狠做深爱婷婷综合一区| 欧洲 亚洲 国产图片综合| 奇米综合四色77777久久| 狠狠色丁香久久综合婷婷| 欧美综合区综合久青草视频| 丁香色欲久久久久久综合网| 天天综合色天天综合色hd| 狠狠色成人综合首页| 国产成人综合亚洲亚洲国产第一页| 欧美亚洲综合另类成人| 亚洲国产成人精品无码久久久久久综合| 色噜噜综合亚洲av中文无码| 色久悠悠婷婷综合在线亚洲| 欧美日韩亚洲综合一区二区三区| 99久久亚洲综合精品网站| 欧美成人精品一区二区综合| 久久精品国产91久久综合麻豆自制| 成人综合久久精品色婷婷| 在线综合亚洲中文精品| 亚洲欧洲国产成人综合在线观看| 亚洲狠狠婷婷综合久久蜜芽| 久久久久综合国产欧美一区二区| 欧美日韩国产综合草草| 精品国产综合成人亚洲区| 久久久久亚洲av综合波多野结衣| 人人狠狠综合久久亚洲高清| 日韩人妻无码一区二区三区综合部| 色爱无码AV综合区| 女人和拘做受全程看视频日本综合a一区二区视频| 亚洲亚洲人成综合网络|