課程目錄:Introduction to R with Time Series Analysis培訓(xùn)
4401 人關(guān)注
(78637/99817)
課程大綱:

        Introduction to R with Time Series Analysis培訓(xùn)

 

 

 

Introduction and preliminaries
Making R more friendly, R and available GUIs
Rstudio
Related software and documentation
R and statistics
Using R interactively
An introductory session
Getting help with functions and features
R commands, case sensitivity, etc.
Recall and correction of previous commands
Executing commands from or diverting output to a file
Data permanency and removing objects
Simple manipulations; numbers and vectors
Vectors and assignment
Vector arithmetic
Generating regular sequences
Logical vectors
Missing values
Character vectors
Index vectors; selecting and modifying subsets of a data set
Other types of objects
Objects, their modes and attributes
Intrinsic attributes: mode and length
Changing the length of an object
Getting and setting attributes
The class of an object
Arrays and matrices
Arrays
Array indexing. Subsections of an array
Index matrices
The array() function
The outer product of two arrays
Generalized transpose of an array
Matrix facilities
Matrix multiplication
Linear equations and inversion
Eigenvalues and eigenvectors
Singular value decomposition and determinants
Least squares fitting and the QR decomposition
Forming partitioned matrices, cbind() and rbind()
The concatenation function, (), with arrays
Frequency tables from factors
Lists and data frames
Lists
Constructing and modifying lists
Concatenating lists
Data frames
Making data frames
attach() and detach()
Working with data frames
Attaching arbitrary lists
Managing the search path
Data manipulation
Selecting, subsetting observations and variables
Filtering, grouping
Recoding, transformations
Aggregation, combining data sets
Character manipulation, stringr package
Reading data
Txt files
CSV files
XLS, XLSX files
SPSS, SAS, Stata,… and other formats data
Exporting data to txt, csv and other formats
Accessing data from databases using SQL language
Probability distributions
R as a set of statistical tables
Examining the distribution of a set of data
One- and two-sample tests
Grouping, loops and conditional execution
Grouped expressions
Control statements
Conditional execution: if statements
Repetitive execution: for loops, repeat and while
Writing your own functions
Simple examples
Defining new binary operators
Named arguments and defaults
The '...' argument
Assignments within functions
More advanced examples
Efficiency factors in block designs
Dropping all names in a printed array
Recursive numerical integration
Scope
Customizing the environment
Classes, generic functions and object orientation
Graphical procedures
High-level plotting commands
The plot() function
Displaying multivariate data
Display graphics
Arguments to high-level plotting functions
Basic visualisation graphs
Multivariate relations with lattice and ggplot package
Using graphics parameters
Graphics parameters list
Time series Forecasting
Seasonal adjustment
Moving average
Exponential smoothing
Extrapolation
Linear prediction
Trend estimation
Stationarity and ARIMA modelling
Econometric methods (casual methods)
Regression analysis
Multiple linear regression
Multiple non-linear regression
Regression validation
Forecasting from regression


主站蜘蛛池模板: 一本久道久久综合狠狠躁AV| 久久狠狠一本精品综合网| 亚洲综合成人网在线观看| 国产成+人+综合+亚洲专| 一本久道久久综合狠狠爱| 久久综合给合久久狠狠狠97色| 99久久精品国产综合一区| 成人久久综合网| 国产成人亚洲综合无码精品| 亚洲综合另类小说色区| 亚洲色欲久久久综合网东京热| 久久亚洲欧洲国产综合| 伊人亚洲综合网| 91精品国产综合久久精品| 亚洲欧美日韩国产综合| 国产天天综合永久精品日| 国产精品综合AV一区二区国产馆| 亚洲色偷偷狠狠综合网| 综合色就爱涩涩涩综合婷婷| 狠狠88综合久久久久综合网| 色爱区综合激情五月综合色| 狠狠亚洲婷婷综合色香五月排名| 台湾佬综合娱乐| 国产在线一区二区综合免费视频| 国产成人综合色在线观看网站| 亚洲精品综合在线影院| 婷婷五月综合色视频| 久久本道综合久久伊人| 亚洲色偷偷狠狠综合网| 亚洲综合国产一区二区三区| 一本色道久久88—综合亚洲精品| 色天使久久综合网天天| 亚洲欧美日韩综合在线播放| 一本综合久久国产二区| 激情综合一区二区三区| 色五月丁香六月欧美综合图片| 亚洲色图综合网| 国产V综合V亚洲欧美久久| 天天看天天摸色天天综合网| 日韩欧美国产综合| 亚洲偷自拍拍综合网|