課程目錄: 人工智能原理培訓
4401 人關注
(78637/99817)
課程大綱:

          人工智能原理培訓

 

 

 

Part I. Basics: Chapter 1. Introduction

1.1 Overview of Artificial Intelligence

1.2 Foundations of Artificial Intelligence

1.3 History of Artificial Intelligence

1.4 The State of The Art

1.5 Summary

Quizzes for Chapter 1

Part I. Basics: Chapter 2. Intelligent Agent

2.1 Approaches for Artificial Intelligence

2.2 Rational Agents

2.3 Task Environments

2.4 Intelligent Agent Structure

2.5 Category of Intelligent Agents

2.6 Summary

Quizzes for Chapter 2

Part II. Searching: Chapter 3. Solving Problems by Search

3.1 Problem Solving Agents

3.2 Example Problems

3.3 Searching for Solutions

3.4 Uninformed Search Strategies

3.5 Informed Search Strategies

3.6 Heuristic Functions

3.7 Summary

Quizzes for Chapter 3

Part II. Searching: Chapter 4. Local Search and Swarm Intelligence

4.1 Overview

4.2 Local Search Algorithms

4.3 Optimization and Evolutionary Algorithms

4.4 Swarm Intelligence and Optimization

4.5 Summary

Quizzes for Chapter 4

Part II. Searching: Chapter 5. Adversarial Search

5.1 Games

5.2 Optimal Decisions in Games

5.3 Alpha-Beta Pruning

5.4 Imperfect Real-time Decisions

5.5 Stochastic Games

5.6 Monte-Carlo Methods

5.7 Summary

Quizzes for Chapter 5

Part II. Searching: Chapter 6. Constraint Satisfaction Problem

6.1 Constraint Satisfaction Problems (CSPs)

6.2 Constraint Propagation: Inference in CSPs

6.3 Backtracking Search for CSPs

6.4 Local Search for CSPs

6.5 The Structure of Problems

6.6 Summary

Quizzes for Chapter 6

Part III. Reasoning: Chapter 7. Reasoning by Knowledge

7.1 Overview

7.2 Knowledge Representation

7.3 Representation using Logic

7.4 Ontological Engineering

7.5 Bayesian Networks

7.6 Summary

Quizzes for Chapter 7

Part IV. Planning: Chapter 8. Classic and Real-world Planning

8.1 Planning Problems

8.2 Classic Planning

8.3 Planning and Scheduling

8.4 Real-World Planning

8.5 Decision-theoretic Planning

8.6 Summary

Quizzes for Chapter 8

Part V. Learning: Chapter 9. Perspectives about Machine Leaning

9.1 What is Machine Learning

9.2 History of Machine Learning

9.3 Why Different Perspectives

9.4 Three Perspectives on Machine Learning

9.5 Applications and Terminologies

9.6 Summary

Quizzes for Chapter 9

Part V. Learning: Chapter 10. Tasks in Machine Learning

10.1 Classification

10.2 Regression

10.3 Clustering

10.4 Ranking

10.5 Dimensionality Reduction

10.6 Summary

Quizzes for Chapter 10

Part V. Learning: Chapter 11. Paradigms in Machine Learning

11.1 Supervised Learning Paradigm

11.2 Unsupervised Learning Paradigm

11.3 Reinforcement Learning Paradigm

11.4 Other Learning Paradigms

11.5 Summary

Quizzes for Chapter 11

Part V. Learning: Chapter 12. Models in Machine Learning

12.1 Probabilistic Models

12.2 Geometric Models

12.3 Logical Models

12.4 Networked Models

12.5 Summary

Quizzes for Chapter 12


主站蜘蛛池模板: 99久久国产综合精品成人影院| 婷婷五月六月激情综合色中文字幕| 狠狠色丁香婷婷综合精品视频| 亚洲欧美日韩综合aⅴ视频| 97se亚洲国产综合自在线| 欧美日韩国产码高清综合人成| 国产成人综合色在线观看网站| 久久久久久久综合日本| 久久综合九色综合97_久久久| 婷婷四房综合激情五月在线| 一本一道久久精品综合| 亚洲综合婷婷久久| 国产综合成人色产三级高清在线精品发布| 一本色道久久88综合日韩精品| 婷婷久久综合九色综合98| 亚洲 欧美 国产 动漫 综合| 狠狠做五月深爱婷婷天天综合| 日韩综合无码一区二区| 亚洲欧美综合区自拍另类| 国产精品天干天干综合网| 色噜噜狠狠色综合网| 2020国产精品亚洲综合网| 日韩亚洲欧美久久久www综合网| 欧美国产综合欧美视频| 青青青伊人色综合久久| 色综合综合色综合色综合| 狠狠狠色丁香婷婷综合久久五月| 狠狠色婷婷狠狠狠亚洲综合| AV狠狠色丁香婷婷综合久久| 精品久久综合1区2区3区激情| 婷婷综合缴情亚洲狠狠尤物| 久久精品水蜜桃av综合天堂| 久久久亚洲裙底偷窥综合| 国产巨作麻豆欧美亚洲综合久久| 2020国产精品亚洲综合网| 天天综合天天做天天综合| 国产精品综合专区中文字幕免费播放| 欧美日韩国产综合视频在线观看| 亚洲欧美成人久久综合中文网| 亚洲国产美国国产综合一区二区| 亚洲欧美日韩综合网导航|