課程目錄:Machine Learning – Data science培訓
4401 人關注
(78637/99817)
課程大綱:

    Machine Learning – Data science培訓

 

 

 

Machine Learning introduction
Types of Machine learning – supervised vs unsupervised learning
From Statistical learning to Machine learning
The Data Mining workflow:
Business understanding
Data Understanding
Data preparation
Modelling
Evaluation
Deployment
Machine learning algorithms
Choosing appropriate algorithm to the problem
Overfitting and bias-variance tradeoff in ML
ML libraries and programming languages
Why use a programming language
Choosing between R and Python
Python crash course
Python resources
Python Libraries for Machine learning
Jupyter notebooks and interactive coding
Testing ML algorithms
Generalization and overfitting
Avoiding overfitting
Holdout method
Cross-Validation
Bootstrapping
Evaluating numerical predictions
Measures of accuracy: ME, MSE, RMSE, MAPE
Parameter and prediction stability
Evaluating classification algorithms
Accuracy and its problems
The confusion matrix
Unbalanced classes problem
Visualizing model performance
Profit curve
ROC curve
Lift curve
Model selection
Model tuning – grid search strategies
Examples in Python
Data preparation
Data import and storage
Understand the data – basic explorations
Data manipulations with pandas library
Data transformations – Data wrangling
Exploratory analysis
Missing observations – detection and solutions
Outliers – detection and strategies
Standarization, normalization, binarization
Qualitative data recoding
Examples in Python
Classification
Binary vs multiclass classification
Classification via mathematical functions
Linear discriminant functions
Quadratic discriminant functions
Logistic regression and probability approach
k-nearest neighbors
Na?ve Bayes
Decision trees
CART
Bagging
Random Forests
Boosting
Xgboost
Support Vector Machines and kernels
Maximal Margin Classifier
Support Vector Machine
Ensemble learning
Examples in Python
Regression and numerical prediction
Least squares estimation
Variables selection techniques
Regularization and stability- L1, L2
Nonlinearities and generalized least squares
Polynomial regression
Regression splines
Regression trees
Examples in Python
Unsupervised learning
Clustering
Centroid-based clustering – k-means, k-medoids, PAM, CLARA
Hierarchical clustering – Diana, Agnes
Model-based clustering - EM
Self organising maps
Clusters evaluation and assessment
Dimensionality reduction
Principal component analysis and factor analysis
Singular value decomposition
Multidimensional Scaling
Examples in Python
Text mining
Preprocessing data
The bag-of-words model
Stemming and lemmization
Analyzing word frequencies
Sentiment analysis
Creating word clouds
Examples in Python
Recommendations engines and collaborative filtering
Recommendation data
User-based collaborative filtering
Item-based collaborative filtering
Examples in Python
Association pattern mining
Frequent itemsets algorithm
Market basket analysis
Examples in Python
Outlier Analysis
Extreme value analysis
Distance-based outlier detection
Density-based methods
High-dimensional outlier detection
Examples in Python
Machine Learning case study
Business problem understanding
Data preprocessing
Algorithm selection and tuning
Evaluation of findings
Deployment

主站蜘蛛池模板: 伊伊人成亚洲综合人网7777| 日日狠狠久久偷偷色综合96蜜桃| 婷婷综合久久中文字幕蜜桃三电影| 熟天天做天天爱天天爽综合网| 色视频综合无码一区二区三区| 狠狠做深爱婷婷综合一区| 一日本道伊人久久综合影| 色综合久久夜色精品国产| 狠狠色综合久久久久尤物| 久久久久一级精品亚洲国产成人综合AV区| 国产香蕉尹人综合在线| 精品综合久久久久久888蜜芽| 精品综合久久久久久888蜜芽| 亚洲AV人无码综合在线观看| 成人综合伊人五月婷久久| 激情五月婷婷综合| 色诱久久久久综合网ywww| 亚洲日韩在线中文字幕综合| 在线亚洲97se亚洲综合在线| 在线综合亚洲中文精品| 93精91精品国产综合久久香蕉| 开心久久婷婷综合中文字幕| 91精品国产综合久久香蕉| 国产精品综合久成人| 亚洲欧美日韩综合| 亚洲狠狠婷婷综合久久久久| 在线综合亚洲中文精品| 国产美女亚洲精品久久久综合| 97久久久精品综合88久久| 91精品国产综合久久香蕉| 热综合一本伊人久久精品| 激情综合色五月丁香六月欧美| 欧美综合自拍亚洲综合图片区| 亚洲综合精品香蕉久久网| 丁香色欲久久久久久综合网| 在线亚洲97se亚洲综合在线| 欧美综合区综合久青草视频| 国产精品综合色区在线观看| 国产综合久久久久久鬼色| 色视频综合无码一区二区三区| 伊人久久大香线蕉综合网站|