
大數(shù)據(jù)分析、AI算法與可視化技術(shù)應(yīng)用實(shí)戰(zhàn)培訓(xùn)
數(shù)據(jù)分析實(shí)戰(zhàn)
第一講 零基礎(chǔ)學(xué)Python
講解Python背景、國內(nèi)發(fā)展?fàn)顩r、基礎(chǔ)語法、數(shù)據(jù)結(jié)構(gòu)及繪圖操作等內(nèi)容。特別針對向量計(jì)算這塊,著重介紹Python在這方面的優(yōu)勢及用法。
第二講 數(shù)據(jù)分析方法論
講解統(tǒng)計(jì)分析基礎(chǔ),包括統(tǒng)計(jì)學(xué)基本概念,假設(shè)檢驗(yàn),置信區(qū)間等基礎(chǔ),并結(jié)合數(shù)據(jù)案例說明其使用場景和運(yùn)用方法。
介紹數(shù)據(jù)分析流程和常見分析思路,并結(jié)合案例進(jìn)行講解。
第三講 數(shù)據(jù)處理技法
從數(shù)據(jù)接入、數(shù)據(jù)統(tǒng)計(jì)、數(shù)據(jù)轉(zhuǎn)換等幾個(gè)方面進(jìn)行講解。數(shù)據(jù)接入包含接入MySQL、Oracle、Hadoop等常見數(shù)據(jù)庫操作;
數(shù)據(jù)統(tǒng)計(jì)包含Pandas包的具體用法和講解;數(shù)據(jù)轉(zhuǎn)換包含對數(shù)據(jù)集的關(guān)聯(lián)、合并、重塑等操作。
此外,針對海量數(shù)據(jù)的情況下,介紹在Spark平臺上的數(shù)據(jù)處理技術(shù),并結(jié)合真實(shí)環(huán)境進(jìn)行操作講解。
數(shù)據(jù)挖掘理論及核心技術(shù)
第四講 認(rèn)識數(shù)據(jù)挖掘
講解數(shù)據(jù)挖掘基本概念,細(xì)致講解業(yè)務(wù)理解、數(shù)據(jù)理解、數(shù)據(jù)準(zhǔn)備、建立模型、模型評估、模型部署各環(huán)節(jié)的工作內(nèi)容及相關(guān)技術(shù);
結(jié)合業(yè)界經(jīng)典場景,講解數(shù)據(jù)挖掘的實(shí)施流程和方法體系。
第五講 數(shù)據(jù)挖掘核心技術(shù)
細(xì)致講解抽樣、分區(qū)、樣本平衡、特征選擇、訓(xùn)練模型、評估模型等數(shù)據(jù)挖掘核心技術(shù)原理,并結(jié)合案例講解其具體實(shí)現(xiàn)和用法。
尤其針對樣本平衡,重點(diǎn)講解人工合成、代價(jià)敏感等算法;針對特征選擇,重點(diǎn)講解特征選擇的核心思路,并結(jié)合Python進(jìn)行案例演示。
大數(shù)據(jù)算法原理及案例實(shí)現(xiàn)(1)
第七講 決策樹算法及Python實(shí)現(xiàn)
決策樹是非常經(jīng)典的算法 ,一般常見于小數(shù)據(jù)的挖掘。由于決策樹具有極強(qiáng)的可解釋性,針對海量數(shù)據(jù)仍然是非常重要的實(shí)用價(jià)值。
主要講解ID3、C4.5、C5.0以及CART決策樹算法的實(shí)現(xiàn)原理,并結(jié)合案例進(jìn)行Python實(shí)現(xiàn)。
第八講 好萊塢百萬級影評數(shù)據(jù)分析與電影推薦實(shí)現(xiàn)
實(shí)戰(zhàn)部分:基于好萊塢百萬級的影評數(shù)據(jù),對數(shù)據(jù)進(jìn)行建模、清洗、透視表操作。
然后根據(jù)用戶畫像分析不同的用戶喜好通過機(jī)器學(xué)習(xí)算法對不同性別、年齡階段的用戶進(jìn)行定制化的電影推薦,后把推薦的電影進(jìn)行可視化的展示操作
大數(shù)據(jù)算法原理及案例實(shí)現(xiàn)(2)
第九講 因果推理算法及Python實(shí)現(xiàn)
大數(shù)據(jù)分析技術(shù)可以幫助我們?nèi)グl(fā)現(xiàn)、解決一些業(yè)務(wù)問題,然而如何去判斷我們的改進(jìn)是否生效,是否在業(yè)務(wù)指標(biāo)上呈現(xiàn)過一定的因果邏輯,
則是一個(gè)重要問題和分析方向。本節(jié)主要介紹因果推理算法,包括貝葉斯推理、狀態(tài)空間模型以及CausalImpact工具等內(nèi)容,并結(jié)合案例進(jìn)行Python實(shí)現(xiàn)。
第十講 深度學(xué)習(xí)算法及Python實(shí)現(xiàn)
對于大數(shù)據(jù)的建模任務(wù),我們可以基于深度學(xué)習(xí)來實(shí)現(xiàn),不僅能夠針對海量數(shù)據(jù)進(jìn)行建模,其效果也非常不錯(cuò)。
本節(jié)主要講解深度學(xué)習(xí)的發(fā)展歷程,DBN、DNN等經(jīng)典深度學(xué)習(xí)算法,深度學(xué)習(xí)優(yōu)化算法以及一些技巧。同時(shí),介紹Keras、OpenCV庫的使用方法,并結(jié)合案例進(jìn)行Python實(shí)現(xiàn)。
第十一講 采用OpenCV實(shí)現(xiàn)計(jì)算機(jī)視覺技術(shù)
實(shí)戰(zhàn)部分:基于OpenCV面部模型,完成對圖片和視頻的人臉識別,實(shí)戰(zhàn)中會講解OpenCV的重要類和函數(shù)。
主要內(nèi)容包括OpenCV庫的安裝和部署、圖像增強(qiáng)、像素操作、圖形分析等各種技術(shù),并且詳細(xì)介紹了如何處理來自文件或攝像機(jī)的視頻,以及如何檢測和跟蹤移動對象。
Python應(yīng)用實(shí)戰(zhàn)(一)
第十二講 Python自然語言處理原理及案例
目前文檔數(shù)據(jù)已經(jīng)成為很多企業(yè)重要的資產(chǎn),通過對文檔數(shù)據(jù)進(jìn)行解析、建模、分析、挖掘、可視化,我們能夠發(fā)現(xiàn)不一樣的洞察。
本節(jié)主要講解自然語言處理基本概念和技法,包含分詞、關(guān)鍵字提取、文摘提取、文本分類、主題模型、word2vec等內(nèi)容。介紹在深度學(xué)習(xí)的加持下,
與傳統(tǒng)做法的區(qū)別,并使用Python進(jìn)行案例講解。
第十三講 數(shù)據(jù)分析圖表及Python案例
數(shù)據(jù)可視化是大數(shù)據(jù)分析的重要手段,通過合理地使用圖表,不僅可以簡潔地表達(dá)數(shù)據(jù)的含義,高效地發(fā)現(xiàn)問題,還可以為報(bào)告的編寫以及數(shù)據(jù)分析web應(yīng)用增色不少。
本節(jié)主要講解常用的數(shù)據(jù)分析圖表及其使用場景,介紹數(shù)據(jù)可視化的方法論,避免生搬硬套的使用圖表,針對不同的業(yè)務(wù)場景和需求,合理選擇可視化方法。
介紹的工具不限于matplotlib、pycha、pyecharts、ggplot、Bokeh、HoloViews、mpld3、plotly、pygal等常用可視化庫。
Python應(yīng)用實(shí)戰(zhàn)(二)
第十四講 使用Notebook編寫數(shù)據(jù)分析報(bào)告
數(shù)據(jù)分析報(bào)告在大數(shù)據(jù)分析過程中具有重要價(jià)值,它體現(xiàn)了大數(shù)據(jù)分析的目的、過程和結(jié)果,以及對發(fā)現(xiàn)問題的解讀、改進(jìn)方案等等,
本節(jié)主要講解使用Notebook編寫數(shù)據(jù)分析報(bào)告的具體方法,以及編寫數(shù)據(jù)分析報(bào)告的方法論,并結(jié)合案例講解其用法。
第十五講 Seaborn可視化開發(fā)實(shí)戰(zhàn)
Seaborn是一款不錯(cuò)的可視化框架,它和 Pandas一樣是建立在 Matplotlib 之上的。可以基于Seaborn快速開發(fā)一個(gè)輕量級的數(shù)據(jù)分析web應(yīng)用。
在網(wǎng)頁中嵌入圖表、數(shù)據(jù)以及分析的算法,非常適合打造企業(yè)內(nèi)部的敏捷數(shù)據(jù)分析工具集。本節(jié)主要介紹Pie、Scatter、Radar等等各種可視化解決方案,
同時(shí)講解一個(gè)用Seaborn實(shí)現(xiàn)數(shù)據(jù)分析功能(兼圖表)的實(shí)際案例,搭建服務(wù)器,在企業(yè)內(nèi)部實(shí)現(xiàn)輕量級數(shù)據(jù)分析應(yīng)用。