課程目錄:Deep Learning for Vision培訓
4401 人關注
(78637/99817)
課程大綱:

    Deep Learning for Vision培訓

 

 

 

 

Deep Learning vs Machine Learning vs Other Methods
When Deep Learning is suitable
Limits of Deep Learning
Comparing accuracy and cost of different methods
Methods Overview
Nets and Layers
Forward / Backward: the essential computations of layered compositional models.
Loss: the task to be learned is defined by the loss.
Solver: the solver coordinates model optimization.
Layer Catalogue: the layer is the fundamental unit of modeling and computation
Convolution?
Methods and models
Backprop, modular models
Logsum module
RBF Net
MAP/MLE loss
Parameter Space Transforms
Convolutional Module
Gradient-Based Learning
Energy for inference,
Objective for learning
PCA; NLL:
Latent Variable Models
Probabilistic LVM
Loss Function
Detection with Fast R-CNN
Sequences with LSTMs and Vision + Language with LRCN
Pixelwise prediction with FCNs
Framework design and future
Tools
Caffe
Tensorflow
R
Matlab
Others...

主站蜘蛛池模板: 色综合综合色综合色综合| 亚洲AV综合色一区二区三区| 亚洲欧美综合另类图片小说区| 久久综合88熟人妻| 久久综合狠狠综合久久综合88| 色综合久久综合网观看| 狠狠色丁香婷婷久久综合不卡| 综合激情五月综合激情五月激情1| 色综合久久天天综合| 亚洲欧美日韩国产综合一区二区| 天堂无码久久综合东京热| 亚洲偷自拍拍综合网| 日韩欧国产精品一区综合无码| 伊人色综合久久天天网| 色偷偷91久久综合噜噜噜噜| 国产欧美综合一区二区三区| 天天影视色香欲综合久久| 人妻 日韩 欧美 综合 制服| 亚洲 综合 国产 欧洲 丝袜| 亚洲AV综合色一区二区三区| 色8激情欧美成人久久综合电| 伊人久久大香线蕉综合5g| 色欲人妻综合AAAAA网| 伊人伊成久久人综合网777| 亚洲欧美综合一区二区三区| 99久久国产综合精品麻豆| 色欲色香天天天综合网站免费| 久久综合狠狠综合久久综合88| 乱欧美综合| 久久综合狠狠色综合伊人| 久久综合国产乱子伦精品免费| 东京热TOKYO综合久久精品| 亚洲人成网站999久久久综合| 亚洲欧美日韩综合在线观看不卡顿| 国产欧美日韩综合AⅤ天堂| 久久婷婷五月综合成人D啪| 奇米综合四色77777久久| 亚洲精品国产综合久久一线| 国产成人精品综合在线观看| 伊人久久大香线焦综合四虎| 97SE亚洲国产综合自在线观看|