課程目錄:Natural Language Processing - AI/Robotics培訓
4401 人關注
(78637/99817)
課程大綱:

    Natural Language Processing - AI/Robotics培訓

 

 

 

Detailed training outline

Introduction to NLP
Understanding NLP
NLP Frameworks
Commercial applications of NLP
Scraping data from the web
Working with various APIs to retrieve text data
Working and storing text corpora saving content and relevant metadata
Advantages of using Python and NLTK crash course
Practical Understanding of a Corpus and Dataset
Why do we need a corpus?
Corpus Analysis
Types of data attributes
Different file formats for corpora
Preparing a dataset for NLP applications
Understanding the Structure of a Sentences
Components of NLP
Natural language understanding
Morphological analysis - stem, word, token, speech tags
Syntactic analysis
Semantic analysis
Handling ambigiuty
Text data preprocessing
Corpus- raw text
Sentence tokenization
Stemming for raw text
Lemmization of raw text
Stop word removal
Corpus-raw sentences
Word tokenization
Word lemmatization
Working with Term-Document/Document-Term matrices
Text tokenization into n-grams and sentences
Practical and customized preprocessing
Analyzing Text data
Basic feature of NLP
Parsers and parsing
POS tagging and taggers
Name entity recognition
N-grams
Bag of words
Statistical features of NLP
Concepts of Linear algebra for NLP
Probabilistic theory for NLP
TF-IDF
Vectorization
Encoders and Decoders
Normalization
Probabilistic Models
Advanced feature engineering and NLP
Basics of word2vec
Components of word2vec model
Logic of the word2vec model
Extension of the word2vec concept
Application of word2vec model
Case study: Application of bag of words: automatic text summarization using simplified and true Luhn's algorithms
Document Clustering, Classification and Topic Modeling
Document clustering and pattern mining (hierarchical clustering, k-means, clustering, etc.)
Comparing and classifying documents using TFIDF, Jaccard and cosine distance measures
Document classifcication using Na?ve Bayes and Maximum Entropy
Identifying Important Text Elements
Reducing dimensionality: Principal Component Analysis, Singular Value Decomposition non-negative matrix factorization
Topic modeling and information retrieval using Latent Semantic Analysis
Entity Extraction, Sentiment Analysis and Advanced Topic Modeling
Positive vs. negative: degree of sentiment
Item Response Theory
Part of speech tagging and its application: finding people, places and organizations mentioned in text
Advanced topic modeling: Latent Dirichlet Allocation
Case studies
Mining unstructured user reviews
Sentiment classification and visualization of Product Review Data
Mining search logs for usage patterns
Text classification
Topic modelling

主站蜘蛛池模板: 国产成人精品综合久久久| 久久综合给合综合久久| 国产福利电影一区二区三区久久久久成人精品综合| 狠狠综合久久综合88亚洲| 久久精品水蜜桃av综合天堂| 亚洲 自拍 另类小说综合图区| 色综合色狠狠天天综合色| 伊人久久亚洲综合影院| 天天做天天爱天天综合网2021| 亚洲国产天堂久久综合| 伊人青青综合网站| 狠狠色噜噜狠狠狠狠色综合久AV| 欧美日韩一区二区综合| 国产天天综合永久精品日| 国产成人精品综合在线观看| 国产综合一区二区| 亚洲欧美精品综合中文字幕| 狠狠色综合久色aⅴ网站| 国产成人99久久亚洲综合精品| 激情综合色五月丁香六月欧美| 国产综合色在线精品| 无翼乌无遮挡全彩老师挤奶爱爱帝国综合社区精品| 精品国产综合成人亚洲区| 色欲香天天天综合网站| 亚洲综合网站色欲色欲| 亚洲av一综合av一区| 久久久久亚洲av综合波多野结衣| 炫硕日本一区二区三区综合区在线中文字幕| 99久久综合狠狠综合久久| 久久久久亚洲AV综合波多野结衣| 久久久久青草线蕉综合超碰| 2021精品国产综合久久| 久久乐国产精品亚洲综合| 色欲天天婬色婬香视频综合网| 国产成人综合久久精品尤物| 色欲香天天综合网无码| 久久久综合香蕉尹人综合网| 精品综合久久久久久97超人| 亚洲国产综合精品中文第一区| 丁香狠狠色婷婷久久综合| 天天爽天天狠久久久综合麻豆|