課程目錄:Machine Learning for Finance (with R)培訓
4401 人關注
(78637/99817)
課程大綱:

    Machine Learning for Finance (with R)培訓

 

 

 

Introduction

Difference between statistical learning (statistical analysis) and machine learning
Adoption of machine learning technology and talent by finance companies
Understanding Different Types of Machine Learning

Supervised learning vs unsupervised learning
Iteration and evaluation
Bias-variance trade-off
Combining supervised and unsupervised learning (semi-supervised learning)
Understanding Machine Learning Languages and Toolsets

Open source vs proprietary systems and software
Python vs R vs Matlab
Libraries and frameworks
Understanding Neural Networks

Understanding Basic Concepts in Finance

Understanding Stocks Trading
Understanding Time Series Data
Understanding Financial Analyses
Machine Learning Case Studies in Finance

Signal Generation and Testing
Feature Engineering
Artificial Intelligence Algorithmic Trading
Quantitative Trade Predictions
Robo-Advisors for Portfolio Management
Risk Management and Fraud Detection
Insurance Underwriting
Introduction to R

Installing the RStudio IDE
Loading R Packages
Data Structures
Vectors
Factors
Lists
Data Frames
Matrices and Arrays
Importing Financial Data into R

Databases, Data Warehouses, and Streaming Data
Distributed Storage and Processing with Hadoop and Spark
Importing Data from a Database
Importing Data from Excel and CSV
Implementing Regression Analysis with R

Linear Regression
Generalizations and Nonlinearity
Evaluating the Performance of Machine Learning Algorithms

Cross-Validation and Resampling
Bootstrap Aggregation (Bagging)
Exercise
Developing an Algorithmic Trading Strategy with R

Setting Up Your Working Environment
Collecting and Examining Stock Data
Implementing a Trend Following Strategy
Backtesting Your Machine Learning Trading Strategy

Learning Backtesting Pitfalls
Components of Your Backtester
Implementing Your Simple Backtester
Improving Your Machine Learning Trading Strategy

KMeans
k-Nearest Neighbors (KNN)
Classification or Regression Trees
Genetic Algorithm
Working with Multi-Symbol Portfolios
Using a Risk Management Framework
Using Event-Driven Backtesting
Evaluating Your Machine Learning Trading Strategy's Performance

Using the Sharpe Ratio
Calculating a Maximum Drawdown
Using Compound Annual Growth Rate (CAGR)
Measuring Distribution of Returns
Using Trade-Level Metrics
Extending your Company's Capabilities

Developing Models in the Cloud
Using GPUs to Accelerate Deep Learning
Applying Deep Learning Neural Networks for Computer Vision, Voice Recognition, and Text Analysis
Summary and Conclusion

主站蜘蛛池模板: 国产激情综合在线观看| 欧美久久天天综合香蕉伊| 97久久天天综合色天天综合色hd| 国产亚洲综合一区柠檬导航| 欧美综合区综合久青草视频| 亚洲欧美综合中文| 区三区激情福利综合中文字幕在线一区| 国产成人综合亚洲AV第一页| 久久91综合国产91久久精品| 色欲久久久天天天综合网| 亚洲成a人v欧美综合天堂下载| 狠狠色噜狠狠狠狠色综合久| 亚洲综合色自拍一区| 久久综合狠狠综合久久97色| 色88久久久久高潮综合影院| 中文字幕乱码人妻综合二区三区| 色综合久久久久久久久五月| 久久精品国产91久久综合麻豆自制| 伊人色综合久久天天人手人婷| 久久久久综合国产欧美一区二区| 激情综合丁香五月| 狠狠色综合网站久久久久久久高清| 欧美久久综合九色综合| 狠狠色综合网站久久久久久久高清| 亚洲欧美日韩综合在线播放| 色偷偷91久久综合噜噜噜噜| 一本一道久久a久久精品综合| 天天色天天综合| 综合亚洲伊人午夜网| 久久综合九色综合网站| 亚洲国产一成久久精品国产成人综合| 激情综合色五月丁香六月欧美| 亚洲综合国产精品| 日韩欧美综合| 香蕉蕉亚亚洲aav综合| 亚洲亚洲人成综合网络| 亚洲小说图区综合在线| 狠狠久久综合| 国产亚洲综合网曝门系列| 久久综合亚洲色HEZYO社区| 综合在线免费视频|