曙海教育集團
全國報名免費熱線:4008699035 微信:shuhaipeixun
或15921673576(微信同號) QQ:1299983702
首頁 課程表 在線聊 報名 講師 品牌 QQ聊 活動 就業
 
Artificial Neural Networks, Machine Learning, Deep Thinking培訓

 
   班級規模及環境--熱線:4008699035 手機:15921673576( 微信同號)
       每期人數限3到5人。
   上課時間和地點
上課地點:【上海】:同濟大學(滬西)/新城金郡商務樓(11號線白銀路站) 【深圳分部】:電影大廈(地鐵一號線大劇院站)/深圳大學成教院 【北京分部】:北京中山學院/福鑫大樓 【南京分部】:金港大廈(和燕路) 【武漢分部】:佳源大廈(高新二路) 【成都分部】:領館區1號(中和大道) 【沈陽分部】:沈陽理工大學/六宅臻品 【鄭州分部】:鄭州大學/錦華大廈 【石家莊分部】:河北科技大學/瑞景大廈 【廣州分部】:廣糧大廈 【西安分部】:協同大廈
最近開課時間(周末班/連續班/晚班):2019年1月26日
   實驗設備
     ☆資深工程師授課
        
        ☆注重質量 ☆邊講邊練

        ☆合格學員免費推薦工作
        ★實驗設備請點擊這兒查看★
   質量保障

        1、培訓過程中,如有部分內容理解不透或消化不好,可免費在以后培訓班中重聽;
        2、培訓結束后,授課老師留給學員聯系方式,保障培訓效果,免費提供課后技術支持。
        3、培訓合格學員可享受免費推薦就業機會。

課程大綱
 

DAY 1 - ARTIFICIAL NEURAL NETWORKS

Introduction and ANN Structure.

Biological neurons and artificial neurons.
Model of an ANN.
Activation functions used in ANNs.
Typical classes of network architectures .
Mathematical Foundations and Learning mechanisms.

Re-visiting vector and matrix algebra.
State-space concepts.
Concepts of optimization.
Error-correction learning.
Memory-based learning.
Hebbian learning.
Competitive learning.
Single layer perceptrons.

Structure and learning of perceptrons.
Pattern classifier - introduction and Bayes' classifiers.
Perceptron as a pattern classifier.
Perceptron convergence.
Limitations of a perceptrons.
Feedforward ANN.

Structures of Multi-layer feedforward networks.
Back propagation algorithm.
Back propagation - training and convergence.
Functional approximation with back propagation.
Practical and design issues of back propagation learning.
Radial Basis Function Networks.

Pattern separability and interpolation.
Regularization Theory.
Regularization and RBF networks.
RBF network design and training.
Approximation properties of RBF.
Competitive Learning and Self organizing ANN.

General clustering procedures.
Learning Vector Quantization (LVQ).
Competitive learning algorithms and architectures.
Self organizing feature maps.
Properties of feature maps.
Fuzzy Neural Networks.

Neuro-fuzzy systems.
Background of fuzzy sets and logic.
Design of fuzzy stems.
Design of fuzzy ANNs.
Applications

A few examples of Neural Network applications, their advantages and problems will be discussed.
DAY -2 MACHINE LEARNING

The PAC Learning Framework
Guarantees for finite hypothesis set – consistent case
Guarantees for finite hypothesis set – inconsistent case
Generalities
Deterministic cv. Stochastic scenarios
Bayes error noise
Estimation and approximation errors
Model selection
Radmeacher Complexity and VC – Dimension
Bias - Variance tradeoff
Regularisation
Over-fitting
Validation
Support Vector Machines
Kriging (Gaussian Process regression)
PCA and Kernel PCA
Self Organisation Maps (SOM)
Kernel induced vector space
Mercer Kernels and Kernel - induced similarity metrics
Reinforcement Learning
DAY 3 - DEEP LEARNING

This will be taught in relation to the topics covered on Day 1 and Day 2

Logistic and Softmax Regression
Sparse Autoencoders
Vectorization, PCA and Whitening
Self-Taught Learning
Deep Networks
Linear Decoders
Convolution and Pooling
Sparse Coding
Independent Component Analysis
Canonical Correlation Analysis
Demos and Applications

 
  備案號:備案號:滬ICP備08026168號-1 .(2024年07月24日)...............
主站蜘蛛池模板: 婷婷久久综合九色综合98| 狠狠色狠狠色综合久久| 色综合.com| 91精品国产综合久久香蕉| 激情伊人五月天久久综合| 亚洲一区综合在线播放| 国产成人AV综合久久| 亚洲综合国产一区二区三区| 一本色道久久综合亚洲精品| 鲁一鲁一鲁一鲁一曰综合网| 国产成人精品综合久久久久| 色综合久久精品中文字幕首页| 狠狠色综合网站| 久久久久久综合一区中文字幕| 一本一道久久精品综合| 亚洲另类激情综合偷自拍图| 99久久国产亚洲综合精品| 亚洲精品综合在线影院| 夜鲁鲁鲁夜夜综合视频欧美| 日韩欧国产精品一区综合无码| 欧美亚洲综合另类成人| 欧美亚洲另类久久综合婷婷| 久久综合狠狠色综合伊人| 久久综合视频网站| 国产亚洲欧美日韩综合综合二区| 激情综合五月天| 欧美日韩国产码高清综合人成| 色综合天天综合婷婷伊人| 天天做天天爱天天综合网2021| 久久婷婷午色综合夜啪| 亚洲精品欧美综合| 一本久道久久综合狠狠躁AV| 伊人久久大香线蕉综合Av| 狼狼综合久久久久综合网| 激情综合婷婷色五月蜜桃| 一本色道久久88加勒比—综合| 久久精品综合一区二区三区| 99久久婷婷免费国产综合精品| 国产综合一区二区在线观看| 一个色综合久久| 无码国内精品久久综合88|