班級規模及環境--熱線:4008699035 手機:15921673576( 微信同號) |
每期人數限3到5人。 |
上課時間和地點 |
開課地址:【上海】同濟大學(滬西)/新城金郡商務樓(11號線白銀路站)【深圳分部】:電影大廈(地鐵一號線大劇院站) 【武漢分部】:佳源大廈【成都分部】:領館區1號【沈陽分部】:沈陽理工大學【鄭州分部】:錦華大廈【石家莊分部】:瑞景大廈【北京分部】:北京中山學院 【南京分部】:金港大廈
最新開班 (連續班 、周末班、晚班):2020年3月16日 |
實驗設備 |
☆資深工程師授課
☆注重質量
☆邊講邊練
☆合格學員免費推薦工作
★實驗設備請點擊這兒查看★ |
質量保障 |
1、培訓過程中,如有部分內容理解不透或消化不好,可免費在以后培訓班中重聽;
2、培訓結束后,授課老師留給學員聯系方式,保障培訓效果,免費提供課后技術支持。
3、培訓合格學員可享受免費推薦就業機會。 |
課程大綱 |
|
- Introduction
- Understanding the Fundamentals of Python
- Overview of Using Technology and Python in Finance
- Overview of Tools and Infrastructure
- Python Deployment Using Anaconda
Using the Python Quant Platform
Using IPython
Using Spyder
Getting Started with Simple Financial Examples with Python
- Calculating Implied Volatilities
Implementing the Monte Carlo Simulation
Using Pure Python
Using Vectorization with Numpy
Using Full Vectoriization with Log Euler Scheme
Using Graphical Analysis
Using Technical Analysis
Understanding Data Types and Structures in Python
- Learning the Basic Data Types
Learning the Basic Data Structures
Using NumPy Data Structures
Implementing Code Vectorization
Implementing Data Visualization in Python
- Implementing Two-Dimensional Plots
Using Other Plot Styles
Implementing Finance Plots
Generating a 3D Plot
Using Financial Time Series Data in Python
- Exploring the Basics of pandas
Implementing First and Second Steps with DataFrame Class
Getting Financial Data from the Web
Using Financial Data from CSV Files
Implementing Regression Analysis
Coping with High-Frequency Data
Implementing Input/Output Operations
- Understanding the Basics of I/O with Python
Using I/O with pandas
Implementing Fast I/O with PyTables
Implementing Performance-Critical Applications with Python
- Overview of Performance Libraries in Python
Understanding Python Paradigms
Understanding Memory Layout
Implementing Parallel Computing
Using the multiprocessing Module
Using Numba for Dynamic Compiling
Using Cython for Static Compiling
Using GPUs for Random Number Generation
Using Mathematical Tools and Techniques for Finance with Python
- Learning Approximation Techniques
Regression
Interpolation
Implementing Convex Optimization
Implementing Integration Techniques
Applying Symbolic Computation
Stochastics with Python
- Generation of Random Numbers
Simulation of Random Variables and of Stochastic Processes
Implementing Valuation Calculations
Calculation of Risk Measures
Statistics with Python
- Implementing Normality Tests
Implementing Portfolio Optimization
Carrying Out Principal Component Analysis (PCA)
Implementing Bayesian Regression using PyMC3
Integrating Python with Excel
- Implementing Basic Spreadsheet Interaction
Using DataNitro for Full Integration of Python and Excel
Object-Oriented Programming with Python
- Building Graphical User Interfaces with Python
- Integrating Python with Web Technologies and Protocols for Finance
- Web Protocols
Web Applications
Web Services
Understanding and Implementing the Valuation Framework with Python
- Simulating Financial Models with Python
- Random Number Generation
Generic Simulation Class
Geometric Brownian Motion
The Simulation Class
Implementing a Use Case for GBM
Jump Diffusion
Square-Root Diffusion
Implementing Derivatives Valuation with Python
- Implementing Portfolio Valuation with Python
- Using Volatility Options in Python
- Implementing Data Collection
Implementing Model Calibration
Implementing Portfolio Valuation
Best Practices in Python Programming for Finance
- Troubleshooting
- Summary and Conclusion
- Closing Remarks
|